Boundary Regularity of Weakly Harmonic Maps from Surfaces
نویسندگان
چکیده
منابع مشابه
Regularity for weakly Dirac-harmonic maps to hypersurfaces
We prove that a weakly Dirac-harmonic map from a Riemann spin surface to a compact hypersurface N ⊂ R is smooth. 2000 Mathematics Subject Classification: 58J05, 53C27.
متن کاملBoundary Regularity and the Dirichlet Problem for Harmonic Maps
In a previous paper [10] we developed an interior regularity theory for energy minimizing harmonic maps into Riemannian manifolds. In the first two sections of this paper we prove boundary regularity for energy minimizing maps with prescribed Dirichlet boundary condition. We show that such maps are regular in a full neighborhood of the boundary, assuming appropriate regularity on the manifolds,...
متن کاملRegularity of Dirac-harmonic maps
For any n-dimensional compact spin Riemannian manifold M with a given spin structure and a spinor bundle ΣM , and any compact Riemannian manifold N , we show an ǫ-regularity theorem for weakly Dirac-harmonic maps (φ, ψ) : M ⊗ΣM → N ⊗ φ∗TN . As a consequence, any weakly Dirac-harmonic map is proven to be smooth when n = 2. A weak convergence theorem for approximate Dirac-harmonic maps is establi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1993
ISSN: 0022-1236
DOI: 10.1006/jfan.1993.1074